How Do You Know The Shape and Size Of a Numpy Array ?
Table Of Contents:
- ndarray.ndim
- ndarray.size
- ndarray.shape
(1) ndarray.ndim
ndarray.ndimwill tell you the number of axes, or dimensions, of the array.
Example-1:
a = np.array([1, 2, 3])
a array([1, 2, 3]) a.ndim Output:
1 Example-2:
b = np.array([[1,4],[3,2]])
b array([[1, 4],
[3, 2]]) b.ndim Output:
2 Example-3:
c = np.array([[[1,4],[3,2]]])
c array([[[1, 4],
[3, 2]]]) c.ndim Output:
3 Example-4:
y = np.zeros((2, 3, 4))
y array([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]],
[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]]) y.ndim Output:
3 (2) ndarray.size
ndarray.sizewill tell you the total number of elements of the array. This is the product of the elements of the array’s shape.
Example-1:
a = np.array([1, 2, 3])
a array([1, 2, 3]) a.size Output:
3 Example-2:
b = np.array([[1,4],[3,2]])
b array([[1, 4],
[3, 2]]) b.size Output:
4 Example-3:
c = np.array([[[1,4],[3,2]]])
c array([[[1, 4],
[3, 2]]]) c.size Output:
4 Example-4:
y = np.zeros((2, 3, 4))
y array([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]],
[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]]) y.size Output:
24 (3) ndarray.shape
ndarray.shapewill display a tuple of integers that indicate the number of elements stored along each dimension of the array. If, for example, you have a 2-D array with 2 rows and 3 columns, the shape of your array is(2, 3).
Example-1:
a = np.array([1, 2, 3])
a array([1, 2, 3]) a.shape Output:
(3,) Example-2:
b = np.array([[1,4],[3,2]])
b array([[1, 4],
[3, 2]]) b.shape Output:
(2, 2) Example-3:
c = np.array([[[1,4],[3,2]]])
c array([[[1, 4],
[3, 2]]]) c.shape Output:
(1, 2, 2) Example-4:
y = np.zeros((2, 3, 4))
y array([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]],
[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]]) y.shape Output:
(2, 3, 4) 
