Reshaping And Flattening Multidimensional Arrays?
Table Of Contents:
- arr.flatten()
- Examples Of arr.flatten()
- arr.ravel()
- Examples Of arr.ravel()
(1) arr.flatten()
- Return a copy of the array collapsed into one dimension.
Syntax:
ndarray.flatten(order='C') Parameters:
- order: {‘C’, ‘F’, ‘A’, ‘K’}, optional – ‘C’ means to flatten in row-major (C-style) order. ‘F’ means to flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-major order if a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the order the elements occur in memory. The default is ‘C’.
Returns:
- y: ndarray – A copy of the input array, flattened to one dimension.
(2) Examples Of arr.flatten()
Example-1:
x = np.array([[1 , 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
x array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12]]) x.flatten() array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) Example-2:
- When you use
flatten, changes to your new array won’t change the parent array.
a1 = x.flatten()
a1 array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) a1[0] = 99
x # Original array array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12]]) a1 [99 2 3 4 5 6 7 8 9 10 11 12] (2) arr.flatten()
- Return a copy of the array collapsed into one dimension.
Syntax:
ndarray.ravel([order]) Returns:
- y: ndarray – A copy of the input array, flattened to one dimension.
Example-1:
x = np.array([[1 , 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
x array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12]]) x.ravel() array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) Example-2:
- But when you use
ravel, the changes you make to the new array will affect the parent array.
a1 = x.ravel()
a1 array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) a1[0] = 99
x # Original array array([[99, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12]]) a1 [99 2 3 4 5 6 7 8 9 10 11 12] 
