Seaborn – Learning Syllabus
Table Of Contents:
- Basics of Seaborn & Setup
- Basic Plot Types
- Advanced Statistical Plots
- Pairwise Relationships & Correlation Plots
- Categorical Data Visualization
- Regression & Trend Analysis
- Customizing Seaborn Plots
- Working with Large Datasets & Complex Visualizations
(1) Basics of Seaborn & Setup
What is Seaborn? Why use it over Matplotlib?
Installing Seaborn (
pip install seaborn
)Importing Seaborn & Matplotlib (
import seaborn as sns
)Understanding Seaborn’s built-in datasets (
sns.get_dataset_names()
)Loading datasets (
sns.load_dataset("tips")
)
(2) Basic Plot Types
Line Plot (
sns.lineplot()
)Scatter Plot (
sns.scatterplot()
)Bar Plot (
sns.barplot()
)Count Plot (
sns.countplot()
)Histogram (
sns.histplot()
)KDE Plot (
sns.kdeplot()
)
(3) Advanced Statistical Plots
Box Plot (
sns.boxplot()
) → Detect outliersViolin Plot (
sns.violinplot()
) → Show distribution + densityStrip Plot (
sns.stripplot()
) → Individual points on a boxplotSwarm Plot (
sns.swarmplot()
) → Avoid overlapping points
(4) Pairwise Relationships & Correlation Plots
Pair Plot (
sns.pairplot()
) → Relationship between all numerical featuresJoint Plot (
sns.jointplot()
) → Combination of scatter + histogramsHeatmap (
sns.heatmap()
) → Show correlations
(5) Categorical Data Visualization
Count Plot (
sns.countplot()
)Box Plot (
sns.boxplot()
)Violin Plot (
sns.violinplot()
)Bar Plot (
sns.barplot()
)
(6) Regression & Trend Analysis
Linear Regression Plot (
sns.regplot()
)Logistic Regression Visualization (
sns.lmplot()
)Polynomial Regression Trend
(7) Customizing Seaborn Plots
Changing colors & palettes (
sns.color_palette()
)Modifying style & themes (
sns.set_theme()
)Adjusting figure size (
plt.figure(figsize=(10, 6))
)Saving Plots (
plt.savefig()
)
(8) Working with Large Datasets & Complex Visualizations
Working with big datasets (
data.sample(n=10000)
)Combining multiple plots (
sns.FacetGrid()
)Interactive Seaborn with Plotly