Seaborn – Learning Syllabus
Table Of Contents:
- Basics of Seaborn & Setup
- Basic Plot Types
- Advanced Statistical Plots
- Pairwise Relationships & Correlation Plots
- Categorical Data Visualization
- Regression & Trend Analysis
- Customizing Seaborn Plots
- Working with Large Datasets & Complex Visualizations
(1) Basics of Seaborn & Setup
What is Seaborn? Why use it over Matplotlib?
Installing Seaborn (
pip install seaborn)Importing Seaborn & Matplotlib (
import seaborn as sns)Understanding Seaborn’s built-in datasets (
sns.get_dataset_names())Loading datasets (
sns.load_dataset("tips"))
(2) Basic Plot Types
Line Plot (
sns.lineplot())Scatter Plot (
sns.scatterplot())Bar Plot (
sns.barplot())Count Plot (
sns.countplot())Histogram (
sns.histplot())KDE Plot (
sns.kdeplot())
(3) Advanced Statistical Plots
Box Plot (
sns.boxplot()) → Detect outliersViolin Plot (
sns.violinplot()) → Show distribution + densityStrip Plot (
sns.stripplot()) → Individual points on a boxplotSwarm Plot (
sns.swarmplot()) → Avoid overlapping points
(4) Pairwise Relationships & Correlation Plots
Pair Plot (
sns.pairplot()) → Relationship between all numerical featuresJoint Plot (
sns.jointplot()) → Combination of scatter + histogramsHeatmap (
sns.heatmap()) → Show correlations
(5) Categorical Data Visualization
Count Plot (
sns.countplot())Box Plot (
sns.boxplot())Violin Plot (
sns.violinplot())Bar Plot (
sns.barplot())
(6) Regression & Trend Analysis
Linear Regression Plot (
sns.regplot())Logistic Regression Visualization (
sns.lmplot())Polynomial Regression Trend
(7) Customizing Seaborn Plots
Changing colors & palettes (
sns.color_palette())Modifying style & themes (
sns.set_theme())Adjusting figure size (
plt.figure(figsize=(10, 6)))Saving Plots (
plt.savefig())
(8) Working with Large Datasets & Complex Visualizations
Working with big datasets (
data.sample(n=10000))Combining multiple plots (
sns.FacetGrid())Interactive Seaborn with Plotly

